QRコードの概要
符号化(エンコード)
エラー訂正の概要
エラー訂正に必要な「行列」の解説
「行列」を使ってエラー訂正をしよう
リード・ソロモン符号とエラー訂正の方法
多項式の割り算
リード・ソロモン符号の作り方
ガロア理論と体
QRコードを作ろう
QRコードメーカー
独極・QRコード担当の「あじな」です。
今回からやっとこさ、「QRコード」に使う「リード・ソロモン符号」についての解説に入っていきます。
気づけば、この連載も中盤を過ぎて、終盤に差し掛かってきました。
最後までお付き合いいただければ幸いでございます。

これまでの復習 [表示する]

  1. QRコードは株式会社デンソーが作ったもので、スマホや携帯で読み取れる
  2. QRコードは「小さな白と黒の四角でできている」「多少汚れても大丈夫」という特徴がある
  3. 白黒の四角を使うのは、コンピュータにわかりやすくさせるため
  4. QRコードは「機能パターン」と「符号化領域」で出来上がっている
  5. 「機能パターン」は、「クワイエットゾーン」「位置検出パターン」「位置検出パターンの分離パターン」「タイミングパターン」「位置合わせパターン」の5種類
  6. 「符号化領域」は「形式情報」「型番情報」「データ領域」の3種類
  7. 「形式情報」は「エラー訂正レベル」と「マスクパターン参照子」で決まり、「\(4 \times 8=32\)」種類のパターンがある
  8. 「型番情報」は「QRコードのバージョンによって決まり、40種類ある
  9. 「データ領域」は「データ」と「エラー訂正情報」で出来上がる
  10. QRコードはバージョンが1〜40まである。一辺の大きさは、「QRコードのバージョン(1〜40)\( \times \)4\( + \)17」
  11. 「エラー訂正レベル」は「L(7%の汚れまで)」「M(15%の汚れまで)」「Q(25%の汚れまで)」「H(30%の汚れまで)」の4種類ある。
  12. 「エラー訂正レベル」が「L」だと「QRコード」で表現できるデータの量は最大で、「H」のときに最小になる。
  13. 「1bit」とは白・黒、1・0のような2種類の情報を表すことができる能力のことで、文字を増やすと「2bit(4種類)」「3bit(8種類)」と表現できる種類が増える
  14. 日常の言葉を「エンコード」して「コード(符号)」に置き換え、「コード(符号)」を「デコード」して日常の言葉に戻す
  15. QRコードの「エンコード」方式は「数字モード」「英数字モード」「漢字モード」「8bitモード」の4種類
  16. どの「エンコード」方式でも、データは「モード指示子」+「文字数指示子」+「データ」+「終端パターン」+「埋め草ビット」+「埋め草ワード」となる
  17. QRコードには「白」と「黒」を読み間違えても、元の情報を復元する「エラー訂正」能力が備わっている
  18. 「エラー訂正」は読み取れた(聞き取れた)言葉から最も近い「ありえそうな単語」を推測すること
  19. 「エラー訂正力が強い」ということは、「あえて使っていない単語が多い」ということと同じで、効率性は悪い
  20. 1,0でできている符号では「ハミング距離(2つの符号間で1と0が異なる箇所の個数)」があり、符号間で最も「ハミング距離」が小さいものを「最小距離」と呼ぶ
  21. 使える「単語」を制限すると「最小距離」は大きくなる
  22. 「最小距離」の半分までのエラーであれば訂正することができる
  23. 「単語」を「符号化」したものに、適当な「1」や「0」を後ろにつけると「最小距離」が大きい「エラー訂正機能付符号」になる
  24. 「エラー訂正機能付符号」を作る際は「符号」に「行列(生成行列)」を掛け算する。
  25. 「QRコード」は「リード・ソロモン符号」と呼ばれる方法で「エラー訂正機能付符号」を作る
  26. 「行列」は数字を並べただけのもので、もともとは「連立方程式」の係数だけ抜き取ってならべたもの
  27. 「行列」の「足し算」「引き算」は各「行列」の要素同士を「足し算」「引き算」したもの
  28. 「行列」の「掛け算」は、左の「行列」から「行」を取り出し、右の「行列」から「列」を取り出して、それぞれの要素を掛け算して足し合わせる
  29. 左の「行列」の大きさが「a行b列」で、右の「行列」の大きさが「b行c列」だった時、「掛け算」結果の行列は「a行c列」になる
  30. 「行列」の「掛け算」は順番を変えると結果も変わる
  31. 「掛け算」しても結果を変えない行列を「単位行列」と呼び、「掛け算」すると結果が「単位行列」になる行列を「逆行列」と呼ぶ
  32. 「行列」の特徴を表している「数字」を「行列式」と呼ぶ。「行列式」は「正方行列」だけが持っている
  33. 「並び替え」は「置換」によってい表すことができ、偶数回の「置換」でできる「並び替え」を「遇置換」、奇数回の「置換」でできる「並び替え」を「奇置換」という
  34. 「行列式」は各列から数字を選択し「掛け算」し、符号をつけた(「遇置換→(+)」「奇置換→(-)」たものを全ての選択パターンで足し合わせる。
  35. 「列」で計算しても、「行」で計算しても結果は同じ
  36. 「全てが0の列」、もしくは、「すべてが0の行」があれば「行列式」は「0」
  37. 「列」を入れ替えたら「行列式」の符号が変わる。「行」を入れ替えても「行列式」の符号が変わる。
  38. 全く同じ「行」が2個以上あれば「行列式」は「0」。全く同じ「列」が2個以上あっても「行列式」は「0」
  39. ある「行列」の「行列式」は、その「行列」の1つの「列」(もしくは「行」)を2つに分割して、2つの「行列」の「行列式」の「足し算」にすることができる
  40. ある「行」に違う「行」を「足し引き」しても、「行列式」の結果は変わらない。ある「列」に違う「列」を「足し引き」しても、「行列式」の結果は変わらない。
  41. ある「行(もしくは列)」を「定数倍」した「行列」の「行列式」は、「定数倍」する前の「行列」の「行列式」に定数をかけたものと同じ
  42. 2つの「行列」を「掛け算」した結果の「行列」の「行列式」と、それぞれの「行列」の「行列式」を「掛け算」した結果は同じ((\ \left| \mathb{A} \times \mathb{B} \right| = \left| \mathb{A} \right| \times \left| \mathb{B} \right| \))
  43. 「連立方程式」の係数を抜き出した「行列」の「行列式」の値が「0」になるということは、元の「連立方程式」が「不良設定問題」である
  44. 「逆行列」は「正方行列」かつ「行列式」の値が「0」でない「行列」だけに存在する
  45. 「\((-1)^{(i+j)} \times (元の行列からi行目とj列目を取り去った行列) \)」を「余因子行列」と呼ぶ
  46. 「行列式」は「余因子展開」を使うと、1サイズ小さい「行列」の「行列式」の「足し算」に展開することができる
  47. 「逆行列」は「(元の「行列」の「行列式」の逆数)\(\times\)(x行・y列目の要素が<元の行列のy行・x列目を取り除いた「余因子行列」の「行列式」>となる「行列」)」
  48. 「階段行列」は上の行から、左側(0の部分を除きます)を1にして、その行より下の行の左側が0になるように適当な数字をかけて足し算・引き算するというのを繰り返して作る
  49. 「ランク」はその「行列」の中の独立した行(または列)の数で、「連立方程式」の係数を「行列」にした場合、未知数の数より「ランク」が低ければ「不良設定問題」となる
  50. 「符号」のサイズが1行n列、「エラー訂正付符号」のサイズが1行m列のとき、「生成行列」はn行m列になる
  51. 「QRコード」で利用される「エラー訂正機能付符号」は「リード・ソロモン符号」と呼ばれるもの
  52. 「検査行列」を「エラー訂正機能付符号」に「掛け算」すると結果は「ゼロ行列」になる。逆に「ゼロ行列」にならないと、読み取った「エラー訂正機能付符号」が間違っている
  53. エラー訂正機能のスペックは「n(「エラー訂正機能付符号」の「長さ」)」、「k(実質的に単語を表現する桁数)」、「d(「エラー訂正機能付符号」の間の「最小距離」)」の3つ
  54. エラー訂正機能のスペックの「n(「エラー訂正機能付符号」の「長さ」)」は「検査行列」の行数と同じ
  55. エラー訂正機能のスペックの「k(「実質的に単語を表現する桁数)」は「検査行列」をn行m列だとすると、「n-(検査行列のランク)」となる
  56. 同じ仲間の「エラー訂正機能付符号」を2つ用意すると、それらを「引き算」した結果も同じ仲間の「エラー訂正機能付符号」の1つになる
  57. 「エラー訂正機能付符号」軍団の中の「最小距離」は、その「エラー訂正機能付符号」軍団の中で最も小さい「ハミング重み」と同じになる
  58. エラー訂正機能のスペックの「d(「エラー訂正機能付符号」の間の「最小距離」)」は「(「検査行列」の「ランク」)+1」以上となる
  59. 「シングルトン限界式」は「d(「エラー訂正機能付符号」の間の「最小距離」)」が「n(「エラー訂正機能付符号」の「長さ」)-k(実質的に単語を表現する桁数)+1」以下になること

「リード・ソロモン符号」の「検査行列」はこれだ!!!

「行列」とか「行列式」とか、「検査行列」とか・・・。ぐだぐだ言っていないでさっさと「QRコード」で使われている「検査行列」を解説せんかい!!!

はいはい。これです。
$$ \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 & \cdots & \alpha^{(2t-3)} & \alpha^{(2t-2)} & \alpha^{(2t-1)} \\ 1 & \alpha^2 & \alpha^4 & \cdots & \alpha^{2(2t-3)} & \alpha^{2(2t-2)} & \alpha^{2(2t-1)} \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ 1 & \alpha^{(n-3)} & \alpha^{2(n-3)} & \cdots & \alpha^{(n-3)(2t-3)} & \alpha^{(n-3)(2t-2)} & \alpha^{(n-3)(2t-1)} \\ 1 & \alpha^{(n-2)} & \alpha^{2(n-2)} & \cdots & \alpha^{(n-2)(2t-3)} & \alpha^{(n-2)(2t-2)} & \alpha^{(n-2)(2t-1)} \\ 1 & \alpha^{(n-1)} & \alpha^{2(n-1)} & \cdots & \alpha^{(n-1)(2t-3)} & \alpha^{(n-1)(2t-2)} & \alpha^{(n-1)(2t-1)} \\ \end{pmatrix} $$ ・・・・。
・・・・・・・。
・・・・・・・・・・、まぁ、今日はこの辺のところで勘弁したろーやないか。

おいおい!まてまて、帰らないで。
これが、「QRコード」の「エラー訂正機能」に使われている「リード・ソロモン符号」の「検査行列」です。
今回からみっちりとこの「検査行列」を調べていきます。

「検査行列」の意味をもう一度復習

「検査行列」の意味がわからなくなった人のために、簡単に説明を。
「検査行列」に「掛け算」すると、答えが「ゼロ行列」になるものだけを「エラー訂正機能付符号」として認めるのでした。
そうすることで、「n(「エラー訂正機能付符号」の「長さ」)」、「k(実質的に単語を表現する桁数)」、「d(「エラー訂正機能付符号」の間の「最小距離」)」を「検査行列」でコントロールすることができるのです。

えっ!?でも、「数字モード」や「英数字モード」、「漢字モード」「8bitモード」といった「QRコード」用のエンコード方式で作った「符号」が先ほどの「検査行列」に「掛け算」すると「ゼロ行列」になるという保証がどこにあるのでしょうか?
「ゼロ行列」にはなりません。当然なりません。だって、「検査行列」とか考えずに「符号」を作ったんですもの。
だから、「QRコード」用のエンコード方式で作った「符号」に適当な「1」「0」を付け加えることで、先ほどの「検査行列」を「掛け算」すると「ゼロ行列」になるように調整するんです。
その調整の方法は後程解説するとして、ここでは、先ほどのリード・ソロモン符号の「検査行列」の特徴を見ていきます。

リード・ソロモンの「検査行列」について

先ほどのリード・ソロモンの「検査行列」をもう一度書いておきましょう。
$$ \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 & \cdots & \alpha^{(2t-3)} & \alpha^{(2t-2)} & \alpha^{(2t-1)} \\ 1 & \alpha^2 & \alpha^4 & \cdots & \alpha^{2(2t-3)} & \alpha^{2(2t-2)} & \alpha^{2(2t-1)} \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ 1 & \alpha^{(n-3)} & \alpha^{2(n-3)} & \cdots & \alpha^{(n-3)(2t-3)} & \alpha^{(n-3)(2t-2)} & \alpha^{(n-3)(2t-1)} \\ 1 & \alpha^{(n-2)} & \alpha^{2(n-2)} & \cdots & \alpha^{(n-2)(2t-3)} & \alpha^{(n-2)(2t-2)} & \alpha^{(n-2)(2t-1)} \\ 1 & \alpha^{(n-1)} & \alpha^{2(n-1)} & \cdots & \alpha^{(n-1)(2t-3)} & \alpha^{(n-1)(2t-2)} & \alpha^{(n-1)(2t-1)} \\ \end{pmatrix} $$ この「行列」は複雑そうに見えますが、この「行列」のx行y列の要素は\(\alpha^{(x-1)(y-1)}\)となることと、xはn行まで、yは2t列までということを覚えるだけで簡単に書けます。
ちなみに、\(\alpha^0=1\)であることだけは覚えておいてください。
まずは、このリード・ソロモンの「検査行列」を書けるようにしましょう。

リード・ソロモンの「検査行列」の特徴について

さぁ、まずは、リード・ソロモンの「検査行列」について、「n(「エラー訂正機能付符号」の「長さ」)」、「k(実質的に単語を表現する桁数)」、「d(「エラー訂正機能付符号」の間の「最小距離」)」を調べてみましょう。
まずは、「n(「エラー訂正機能付符号」の「長さ」)」ですが、これは簡単ですね。
リード・ソロモンの「検査行列」が「n行」なので、「エラー訂正機能付符号」の「長さ」も「n」になります。
(同じ「n」という文字を使っているのでわかり難くてすみません)

それでは、次回から「k(実質的に単語を表現する桁数)」、「d(「エラー訂正機能付符号」の間の「最小距離」)」を見ていこうと思います・・・・が。
「k」や「d」を計算するのに、「検査行列」の「ランク」を計算することが重要でしたね。
なので、次回はリード・ソロモンの「検査行列」の「ランク」を計算してみましょう。